MTH401_Current Subjective paper Solved by MASOOM FAIRY

Total Questions: 26

MCQs: 20

Subjective: 6

Q: 21: Show that the functions $f_1(x) = \sin x$ and $f_2(x) = x$ are linearly dependent. [Marks 2]

Answer: They both are linearly dependent because both are equal to non-zero.

Q: 22: If $y = e^{mx}$ is the solution of $d^2y/dx^2 + dy/dx + 2y = 0$ then write the auxiliary equation. [Marks 2]

Solution: [according to Complimentary function]

$$m^2 + m + 2 = 0$$

Q: 23: Explain the first order Chemical Reaction. [Marks 3]

Answer: [Page 100 and 101]

Chemical reactions:

In a first order chemical reaction, the molecules of a substance A decompose into smaller molecules. This decomposition takes place at a rate proportional to the amount of the first substance that has not undergone conversion. The disintegration of a radioactive substance is an example of the first order reaction. If X is the remaining amount of the substance A at any time t then

$$\frac{dX}{dt} = k X$$

k < 0 because X is decreasing.

In a 2^{nd} order reaction two chemicals A and B react to form another chemical C at a rate proportional to the product of the remaining concentrations of the two chemicals.

MTH401_Current Subjective paper Solved by MASOOM FAIRY

If X denotes the amount of the chemical C that has formed at time t. Then the instantaneous amounts of the first two chemicals A and B not converted to the chemical C are $\alpha-X$ and $\beta-X$, respectively. Hence the rate of formation of chemical C is given by

$$\frac{dX}{dt} = k (\alpha - X)(\beta - X)$$

where k is constant of proportionality.

Q: 24: If $m^2 + 8m + 16 = 0$ is an equation then find its general solution.

Solution: [According to Complementary Function]

$$m^{2} + 2m + 1 = 0$$

 $(m-1)(m-1) = 0$
 $m_{1} = 1, m_{2} = 1$
Then,
 $c_{1}e^{-4x} + c_{2}e^{-4x}$

Q: 25: Solution of

$$y''-2y'+y=0$$

 $y=c_1e^x+c_2xe^x$ is correct?

Answer: according to Complementary Function

$$m^2 + 2m + 1 = 0$$

 $(m-1)(m-1) = 0$
 $m_1 = 1, m_2 = 1$

Q: 26: Lecture 20 Like (Write the wronskian solution of the following.)